Higher Still
 Notes
 www.hsn.uk.net

Higher
 Chemistry

Contents

Hess's Law 1
Procedure 1
Results 1
Calculation/Conclusion 2
Quantitative Electrolysis 2
Procedure 3
Results 3
Calculation/Conclusion 3
Evaluation 4
A Redox Titration 5
Procedure 5
Results 5
Calculation/Conclusion 6

These notes were created specially for the Higher Still Notes website, and we require that any copies or derivative works attribute the work to us.

Hess's Law

State the aim of the experiment.
To confirm Hess's Law.

Procedure

Use equations to describe the two routes whereby you converted solid potassium hydroxide into potassium chloride solution and label them with appropriate $\Delta \mathrm{H}$ values.

$$
\mathrm{KOH}_{(s)}+\mathrm{HCl}_{\text {(aq) }} \longrightarrow \mathrm{KCl}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{c})} \quad \Delta H_{1}
$$

or

$$
\begin{aligned}
\mathrm{KOH}_{(s)}+(\mathrm{aq}) & \longrightarrow \mathrm{KOH}_{(a q)} \\
\mathrm{KOH}_{(a q)}+\mathrm{HCl}_{(a q)} & \longrightarrow \mathrm{KCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

Write down the relationship between the $\Delta \mathrm{H}$ values for Hess's Law to hold true.

$$
\Delta H_{1}=\Delta H_{2 a}+\Delta H_{2 b}
$$

Results

Present your results in an appropriate manner.

1	Mass of KOH	1.29
	Temperature of acid	22.75
	Temperature of reaction	38.5
2 a	Mass of KOH	1.24
	Temperature of water	20.3
	Temperature of reaction	25.75
6	Temperature of acid	23
	Temperature of KOH solution	24.4
	Temperature of reaction	28.75

Calculation/Conclusion

Carry out a calculation to show the confirmation of Hess's Law.

$$
\begin{aligned}
\Delta I_{1} & =15.75^{\circ} \mathrm{C} \\
E & =c m \Delta I \\
& =4.18 \times 0.025 \times 15.75 \\
& =1.65 \mathrm{~kJ}
\end{aligned}
$$

so 56.1 g (1 mole) would give 71.76 kJ

$$
\Delta H_{1}=-71.76 \mathrm{~kJ} \mathrm{~mol}^{1}
$$

$$
\begin{aligned}
& \Delta I_{2 a}=5.45^{\circ} \mathrm{C} \\
& \begin{aligned}
E & =c m \Delta T \\
& =4.18 \times 0.025 \times 5.45 \\
& =0.57 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

1.24 g KOH gave 0.57 kJ
so 56.1 g (1 mole) would give 25.77 kJ

$$
\Delta H_{2 a}=-25.77 \mathrm{~kJ} \mathrm{~mol}^{1}
$$

$$
\begin{aligned}
\Delta I_{2 b} & =5.05^{\circ} \mathrm{C} \\
E & =c \mathrm{~m} \Delta I \\
& =4.18 \times 0.05 \times 5.05 \\
& =1.06 \mathrm{~kJ}
\end{aligned}
$$

$$
\Delta H_{1}=-71.76 \mathrm{~kJ} \mathrm{~mol}^{1} \quad \Delta H_{2 a}+\Delta H_{2 b}=-25.77-47.75
$$

The experiment has confirmed Hess's Law with reasonable accuracy.

Quantitative Electrolysis

State the aim of the experiment.
To confirm the charge of a mole of electrons by determining the quantity of electricity required to produce 1 mole of hydrogen through electrolysing dilute sulphuric acid.

Procedure

Draw a labelled diagram of the circuit.

List all the measurements that were made during the experiment.

- The volume of hydrogen collected in the measuring cylinder
- The current
- The time

Results

Present your results in an appropriate manner.

$$
\begin{aligned}
\text { Volume of hydrogen } & =42 \mathrm{ml} \\
\text { Current } & =0.5 \mathrm{~A} \\
\text { Time } & =645 \mathrm{~s}
\end{aligned}
$$

Calculation/Conclusion

Carry out a calculation to determine the quantity of electricity required to produce one mole of hydrogen. Assume the molar volume of hydrogen to be 24.1 litres mol^{-1}.

$$
\begin{aligned}
Q & =I t \\
& =0.5 \times 645 \\
& =322.5 \mathrm{C}
\end{aligned}
$$

$0.042 l$ were produced by
322.5 C
so 24.11 would be produced by 185053.6C

Evaluation

In theory, 193000 C are required to produce one mole of hydrogen by electrolysis.
Suggest sources of error which could account for any difference between your result and the theoretical one.

- Inaccurate timing
- Inaccurate measurement of volume
- Current changing throughout experiment
- Hydrogen may dissolve in the water slightly, or be held in the electrode

A Redox Titration

State the aim of the experiment.
To find the mass of vitamin C in a tablet, using a solution of iodine, and starch as an indicator.

Using the molecular formula for vitamin C write equations for the oxidation and reduction half-reactions and hence write a balanced equation for the redox reaction between vitamin C and iodine.

$$
\begin{array}{rlr}
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6} & \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{H}_{(a q)}^{+}+2 e^{-} & \begin{aligned}
& \text { oxidation } \\
& I_{2(a q)}+2 e^{-} \longrightarrow 2 I_{(a q)} \\
& \mathrm{C}_{6} H_{8} \mathrm{O}_{6}+I_{2(a q)} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 H_{(a q)}^{+}+2 I_{(a q)}
\end{aligned} \\
\text { reduction } \\
\text { redox }
\end{array}
$$

Procedure

Write a brief description of the experimental procedure you carried out to determine the mass of vitamin C in a tablet.

- The vitamin C tablet was dissolved in deionised water and made up to the mark in a standard flask.
- $25 \mathrm{~cm}^{3}$ was pipetted into a conical flask, along with a few drops of starch.
- Iodine solution was run into the flask using a burette, until the blue/black colour just remained.
- The volume of iodine used was noted, and the procedure repeated until concordant results were obtained.

Results

Record your results in an appropriate manner.

	1st try	2nd try	3rd try
1st reading (ml)	0.45	12.25	23.70
2nd reading (ml)	12.25	23.70	35.25
Titre (ml)	11.80	11.45	11.55

Average Titre $=11.50 \mathrm{ml}$

Calculation/Conclusion

Carry out a calculation to determine the mass of vitamin C in the tablet.
$0.025 \mathrm{~mol}^{1}$ means 1000 ml contains $0.025{\text { moles } I_{2}}^{2}$
so
11.5 ml contains $0.025 \times \frac{11.5}{1000}$
$=0.0002875{\text { moles } I_{2}}^{2}$
In the conical flask there were 0.0002875 moles vitamin C so in the 250 ml of vitamin C solution there were 0.002875 moles vitamin C so in 1 tablet there are 0.002875 moles vitamin C

1 mole of vitamin C has mass $\quad 176 \mathrm{~g}$
so
0.002875 moles of vitamin C has mass 176×0.002875

$$
=0.506 \mathrm{~g}
$$

